The receiver combines the advantages of homodyne interferometry with the benefits of multi-detector technology. The beam reflected by the sample’s rough surface is comprised of many speckles. The multi-speckled signal beam is combined with the reference beam and focused on 50 photo-detectors. Each detector collects a few speckles and delivers a homodyne signal.

Each homodyne signal is processed in parallel using a patented signal processing architecture. The signal processing is based on a “random quadrature” demodulation scheme which takes advantage of the random phase distribution inherent to speckle light. The detectors produce a time-varying analog voltage that is proportional to the rectified instantaneous surface displacement at ultrasonic frequencies.

APPLICATIONS

On-line inspection and Quality Control

When propagating through a specimen, the ultrasonic waves carry information about the inner structure. Similarly, when propagating along a surface, the information about the surface quality and surface coatings can be extracted.

Thickness measurement

If the sonic velocity of the material is known, it is possible to measure the thickness of the specimen. Using a pulse-echo configuration (detection and generation on same side and superimposed), with the velocity of sound c and the time t between two peaks, the distance d in the material can be calculated.

SPECIFICATIONS

- Can be fitted with lasers ranging from visible to IR
- Fiberized
- Inspection on rapidly moving object
- High sensitivity on all surface types and materials
- Continuous, modulated or long pulse detection laser