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Abstract: Micromachining with high repetition rate femtosecond lasers and galvo scanners
shows some limitations in the pulses positioning accuracy due to the galvo mirrors acceleration.
This is particularly evident during scan speed or direction changes, resulting in a poor quality
and overtreatment e.g. in corners. Several scanning approaches have been proposed to tackle
these issues like the so-called skywriting (SW) and the pulse-on-demand (POD) being the last
limited to ns lasers, moderate pulse repetition rates and scan speeds. Recently, POD approach
has been extended to femtosecond laser sources with high power and high repetition rate. Here,
for the first time, we explored the huge potential in laser micromachining of femtosecond POD
technology associated to a fast galvo scanner. We tested an innovative set-up allowing for
precise laser triggering at the requested time and position for MHz repetition rate and scan
speed as high as 20 m/s. The pulse position accuracy of the system has been estimated to
be ≤ 1µm whilst performances have been evaluated in comparison to conventional scanning and
SW. Finally, we report the results of an engraving test on stainless steel. The advantages of the
approach we propose are clearly shown in terms of machining quality and precision with respect
to conventional scanning and reduction of the processing time by ≈ 40% with respect to SW.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The use of ultrashort pulse lasers (UPLs) in micromachining provides numerous advantages,
such as the ability to enable new fabrication processes which cannot be accomplished with
longer pulses [1–3]. Additionally, UPLs achieve the highest machining precision and quality
in applications like cutting, drilling, engraving, milling, etc. [4–7]. Features such as these
have driven a remarkable increase of UPL technological readiness in recent years. Rugged,
reliable, high power, industrial UPLs are now available on the market, delivering an average
power P of several hundreds of Watts with repetition rates reaching several MHz [8–14]. At these
powers, unwanted heat accumulation phenomena can arise due to excessive pulse overlapping
thus limiting the full exploitation of the laser performance [15–17]. To mitigate or even prevent
this risk, innovative optomechanical systems have been developed and placed on the market
enabling scan speeds well beyond tens of meters per second in both modes vectoral scanning (2D)
[18] and raster scanning (1D) [19] Following this technological approach we have recently shown
that it is possible to effectively texture metallic surfaces with a repetition rate of 10 MHz and scan
speed of 200 m/s, and also cut micro- mechanical components with a repetition rate of 1 MHz and
scan speed of 2 m/s [20,21]. Nonetheless, deficiencies in the synchronization of the positioning
of beam deflection device and laser triggering, still lead to machining defects. We mention
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for instance overtreatment due to the inertia of the mirrors of galvanometer scanners or path
deviations at complex shapes. In the case of polygon scanner heads, techniques of highly precise
pulses triggering have been introduced enabling an increase of the pulse positioning accuracy to
few µm [22]. This is also true for scan speed values as high as several tens of m/s. In the case of
galvo scanners, pulse overlapping tends to be modified when the laser path entails acceleration.
This can cause issues for applications such as engraving, where an excessive material ablation can
be observed in the pattern edges, or scribing of geometric paths including sharp corners, which
tend to either be rounded or overtreated. In this case, a possible approach is SW, in which the laser
is switched-off during acceleration and a supplementary mirror movement is made to accomplish
the variation. Once this is completed, pulses are delivered again. This technique entails an extra
time which can induce a throughput reduction in the case of complex patterns and multiple
direction changes. This issue is overcome with the so-called pulse-on-demand (POD) technique
[23]. In this case the opto-mechanical system positioning the pulses (for example a galvo scanner)
can predict the exact time to trigger the pulse emission to ensure the desired location of the
laser pulses. Techniques such as switch gain and Q-switch, make it possible to modify the laser
repetition rate and adapt it in order to promptly trigger the pulse emission [24,25]. However,
these architectures are limited to pulse widths in the nanosecond domain and pulse repetition
rates below 1 MHz (typical even lower, tens to hundred kHz). This still causes a lack of precision,
especially at scan speed as high as 20 m/s. Here a novel technological approach is proposed
and tested making possible the POD also for femtosecond laser and dramatically increasing the
positioning precision in time and in space. The Spot Distance Control feature of the galvo scanner
controller (RTC) allows one to calculate and predict the actual beam position also including
mirrors acceleration and/or deceleration. An UPL, based on a mode-locked master oscillator
and a power amplifier in chirped pulse amplification (CPA), having the pulse on demand feature
FemtoTrig has been recently developed and here utilized for the first time [26,27]. FemtoTrig
ensures pulses at constant energy and negligible timing jitter at any user trigger interval. User
trigger intervals may vary from seconds down to a few periods of the mode- locked oscillator’s
pulse period Tosc=1/f osc, f osc being the oscillator pulse repetition rate which is typically in the
range of some 10 MHz. The constant pulse energy is achieved by precise control of the laser
gain through the amplifier chain. The timing jitter is as low as one period of the mode-locked
master oscillator: T jitter=1/f osc. According to the precise position feedback, a controller will
dynamically adjust the pulse to pulse delay and accomplish constant energy deposition at any
programmed scan pattern and trajectory. We have combined these two recent innovations in a
single set-up (hereinafter called POD-FT) to validate the synchronization and constant pulse
separation at various scan speeds and geometrical patterns and demonstrate the huge potential of
this combination for high throughput and high precision laser machining. Applications trials like
engraving with scan speed up to 20 m/s are presented in comparison to conventional scanning
approach and SW to demonstrate the benefit of the fast synchronization and pulse on demand
technologies also for femtosecond lasers.

2. Experimental

We carried out four different tests (i), (ii), (iii) and (iv). In all the four tests we used a CPA, UPL
emitting in the IR (λ= 1030 nm) and converted by THG to UV, λ= 343 nm (Tangor, provided
by Amplitude Système). The maximum P it could deliver at this wavelength was P= 32W. The
pulse duration was 350 fs. Thanks to the FemtoTrig method the user can select the pulses he
needs from the oscillator train conserving the same energy per pulse or burst of pulses. The
latency delay between the trigger signal (sent to the controller by the scanner) and the emergence
of the pulse at the output of the laser was constant. The incertitude on this delay is lower than
25 ns i.e. one oscillator period. The nominal optimal configuration i.e. nominal repetition rate
and nominal number of pulses in a burst is factory set. P is maximum for this configuration.
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Furthermore, the energy per pulse and the number of pulses in the burst will be kept constant
for all repetition rate values lower than the nominal one. Thanks to this feature the ablation is
kept unchanged during slow down and acceleration phases of the scanner. During all the tests,
the beam was coupled into a galvo scanner excelliSCAN 14 and driven by a RTC6 board, both
provided by SCANLAB, and then focused through an f-theta lens with focal length f= 100 mm
(spot size 2ω0 = 15 µm). The scanner board was controlled by two different control software.

To test the set-up reliability (test (i)) the software control (DMC provided by Direct Machining
Control) was programmed to scan a line of 10 mm with different scan speed values v= 10
m/s, v= 15 m/s, v= 20 m/s at a constant repetition rate f = 1kHz. The corresponding TTL
signal generated from the RTC6 was used to gate a function generator (Tombak by Aerodiode).
The Tombak was programmed to emit a sequence of pulses with a varying temporal distance
∆t. In particular, for each v value, we fixed two sets of ∆t enabling the first a pulse-to-pulse
distance d= 20 µm, d= 21 µm, d= 22 µm, d= 23 µm, d= 24 µm, d= 25 µm, and the second
d= 10 µm, d= 20 µm, d= 30 µm, d= 40 µm. In test (ii) we compared POD-FT performances
with conventional scanning and SW. In this case the control software (laserDESK provided
by SCANLAB) was programmed to scan squares of 5 cm × 5 cm using the three previously
mentioned approaches (see Fig. 1 part 1 plus part 2). In the conventional approach we fixed a set
of values of repetition rate f and v corresponding to d= 25 µm, namely f= 100 kHz / v= 2.5 m/s,
f= 400 kHz / v= 10 m/s, f= 600 kHz / v= 15 m/s, f= 800 kHz / v= 20 m/s. Identically, in the
SW approach (automatically managed via LaserDESK) the same f /v values were used. Finally,
in the POD-FT approach we fixed d= 25 µm and varied v (v= 2.5 m/s, v= 10 m/s, v= 15 m/s and
v= 20 m/s).

Fig. 1. The figure shows a schematic of the experimental apparatus.

In test (iii) we carried out engraving tests to further compare thementioned scanning approaches:
conventional scanning, SW and POD-FT. We used the same set-up as in test (ii). For conventional
scanning and SW we varied v (v= 0.9 m/s, v= 3.6 m/s v= 7.2 m/s) and proportionally f (f= 100
kHz, f= 400 kHz, f= 800 kHz) in order to keep d= 9 µm as well as the pulse overlapping (40%)
unchanged. For the POD-FT we fixed d= 9 µm and we varied v (v= 0.9 µm, v= 3.6 µm and
v= 7.2 µm). In all cases we engraved a letter “A” (size ≈ 3 mm x 3 mm) with 75 scan repetitions
and a hatch of 3 µm. The scanning direction between two successive scans was varied with
a fix increment of 14.4°. Results were analysed via optic microscope (MF-A1010H provided
by Mitutoyo), profilometer (DCM3D provided by Leica) and SEM (Vega provided by Tescan).
Test (iv) was the same as (ii), except that it was carried out with a different control software
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(DMC+XL SCAN). The last one makes possible to compensate the above-mentioned latency
delay. Tests (i) was carried out on PET whilst tests (ii), (iii) and (iv) were carried out on polished
stainless steel with a pulse energy E= 4 µJ. Squares relatives to test (ii) were marked 10 times.

3. Results and discussion

3.1. Set-up reliability

Figure 2 left, shows the visual appearance of laser pulses impacts triggered with POD-FT when
v= 10 m/s, v= 15 m/s and v= 20 m/s. The trigger signal consists of a sequence of electronic
pulses having a variable temporal delay ∆t. The last is adjusted to enable a relative distance
between two successive impacts δ varying from δ= 20 µm to δ= 25 µm with a step of 1 µm. To
evaluate the reliability of the POD-FT, δ was measured via software (Gwiddion) and plotted in
Fig. 2 right. As visual reference the ideal case relative to a set of impacts in which the pulse
distance is exactly 1 µm is also plotted (dashed black line). From the linear fit of the measurements
(red circles for v= 10 m/s, green triangles for v= 15 m/s and black squares for v= 20 m/s) the
values of slopes η for each v was extracted. The last corresponds to the average increment
of δ when passing from one impact to the next one. For the reference case η= 1 µm/impact.
From our measurements we obtained η= 1.02± 0.05 µm/impact, η= 0.98± 0.04 µm/impact and
η= 1.00± 0.05 µm/impact for v= 10 m/s, v= 15 m/s and v= 20 m/s, respectively. Furthermore,
excluding the case of v= 15 m/s and #= 5, the discrepancy between the reference and all our
measurements is lower than the uncertainty induced by the jitter ∆δ (∆δ= 0.5 µm black line,
∆δ= 0.375 µm green line, ∆δ= 0.25 µm red line respectively for v= 10 m/s, v= 15 m/s and v= 20
m/s). This shows that POD-FT allows one to deliver pulses with a spatial accuracy lower than
1 µm, independently from v and up to v= 20 m/s.

Fig. 2. Visual appearance of the laser spot impacts on PET (left). For all the v values,
pulses were triggered with a temporal delay corresponding to a relative distance δ varying
from 20 µm (left side) to 25 µm (right side) with an increment of 1 µm. The graph (right
side) shows the values of δ we measured via software versus the laser spot number for v= 10
m/s (red circle), v= 15 m/s (green triangles) and v= 20 m/s (black squares). Also plotted
the ideal case (black dashed line) of δ increasing from impact to impact of 1 µm and the
uncertainty induced by the jitter for v= 10 m/s (red lines) v= 15 m/s (green lines) and v= 20
m/s (black lines).

Figure 3 shows the visual appearance of laser impacts obtained in the same experimental
conditions as Fig. 2 with the difference that ∆t was adjusted to enable an increasing relative
distance (δ= 10 µm, δ= 20 µm, δ= 30 µm, δ= 50 µm) in Fig. 3 top-left and decreasing in Fig. 3
top-right (δ= 50 µm, δ= 30 µm, δ= 10 µm, δ= 5 µm). We observe that since v is fixed, the first
case corresponds to a decrease of the repetition rate whilst in the second the repetition rate
increases. Importantly, not only are the impacts well positioned but the profile relative to a given
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v value shows peaks with similar depth dz for the repetition rate increases and decreases (see
respectively Fig. 3 bottom-left and bottom-right). We believe this demonstrates that the pulse
energy doesn’t change significantly when pulses are triggered on demand. This is also confirmed
as the size of impacts does not change significantly from each other. In fact, for each v value, all
the impacts are tangent to the dashed-point blue lines plotted in Fig. 3 which are parallel and are
equally spaced.

Fig. 3. Visual appearance of the laser spot impacts on PET. For all the v values, pulses
were triggered with a temporal delay corresponding to a relative distance (from left to right)
δ= 10 µm, δ= 20 µm, δ= 30 µm, δ= 50 µm (left side) and δ= 50 µm, δ= 30 µm, δ= 20 µm,
δ= 10 µm (right side). Also shown the depth of the impacts for v= 10 m/s (black line) v= 15
m/s (blue line) and v= 20 m/s (orange line). Also plotted (blue dashed line) parallel lines
which are tangent to each group of impacts.

3.2. Comparative evaluation of set-up performances

Figure 4 shows the up-right corners of the 5 cm × 5 cm squares obtained after N= 10 passes with
a scan speed v= 2.5 m/s, v= 10 m/s, v= 15 m/s and v= 20 m/s. With respect to the section 3.1, a
different software was used to control both scanner and laser (laserDESK). Moreover, the trigger
signal generated was injected directly in the laser to control pulse emission. Three different
scanning strategies were used, POD-FT (Fig. 4(a), conventional (Fig. 4(b)) and SW (Fig. 4(c)).
Starting from v= 2.5 m/s we observe that for conventional scanning, pulses tend to overlap

in the corners where the acceleration is higher (see Fig. 4(b)). The overlapping becomes more
evident for higher values of v and pulses are undistinguishable over v= 10 m/s.
A different behavior is observed for POD-FT and SW. In both cases pulses are kept well

separated independently from the v values, this is highlighted at the corner edges. Nonetheless,
from Fig. 4(a) it can be easily observed that when using POD-FT, still δ slightly varies in
correspondence of the corned edge where the galvo mirror acceleration is higher. There are a
number of factors having an effect on the variation of δ when using POD-FT, we mention in
particular the latency delay. Figure 5 shows the results we obtained after the « latency delay »
has been taken into account in the calculation of the instant that the laser pulse is triggered by the
scanner board (RTC6) combined with the software DMC+XL SCAN. It can be observed that
pulses are now equally spaced independently from both the scan speed (from v= 7.5 m/s to v= 20
m/s with a step of v= 2.5 m/s) and the acceleration value. No spot accumulation is observed in
the corners. We can therefore conclude that after the latency delay has been compensated the
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Fig. 4. The figure shows the up-right corners relative to three sets of squares obtained (a)
with POD-FT, (b) with conventional scanning, (c) with SW. Each set is composed of four
squares corresponding to 4 different v values v= 2.5 m/s, v= 10 m/s, v= 15 m/s and v= 20
m/s. In all cases the number of laser passes is N= 10 and the distance between the pulses
has been fixed to δ= 25 µm.

POD-FT enables an excellent pulse to pulse control which is not only < 1 µm (see Fig. 2(b)) but
is also comparable to the SW approach.

Fig. 5. The figure shows a set of 6 squares obtained with POD-FT scanning, N= 10
repetitions and scan speed varying from v= 7.5 m/s to v= 20 m/s. In all cases the spot
distance was fixed to δ= 25 µm and the latency delay has been taken into account by the
scanner board when triggering pulses.

3.3. Highly precise engraving

Figure 6 shows a part of the letter “A” that was engraved following three different approaches
POD-FT, Conventional Scanning and SW. During the tests we varied the scan speed (v= 0.9 m/s,
v= 3.6 m/s and v= 7.2 m/s and the repetition rate (respectively f= 100 kHz, f= 400 kHz and
f= 800 kHz) in order to keep δ unchanged (δ= 9 µm which correspond to an overlap of 40%). It
is worth observing that in the case of POD FT the f value is only a reference value that can varies
pulse by pulse following the scanner “demand. The number of scans N was fixed to N= 75 (see
experimental part) as well as the pulse energy E= 4µJ and the hatch= 3µm. Starting from v= 0.9
m/s et f= 100 kHz we obtained similar results in terms of machining quality with similar depth
and flat bottom. With v= 3.6 m/s, f = 400 kHz for conventional scanning, a degradation of the
machining quality is observed. In particular, important phenomena of over-engraving induced on
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the bottom groove contour by the galvo mirror acceleration are now visible (see black contour in
Fig. 6(e)) No remarkable variations are observed for POD-FT and SW. Finally, when v= 7.2 m/s
slight over-engraving is observed also in the case of POD-FT and SW (see deep blue part in 3D
profiles of Fig. 7) but in the case of conventional scanning this phenomenon becomes dramatic
with a deep over engraving in the correspondence of the groove contour. As shown in Fig. 7
(yellowish part of Fig. 7 middle), the profilometer is even unable to measure the depth of the
over-engraved part. We believe this is due to its high aspect ratio which induce a lack of reflected
light.

Fig. 6. The figure shows a part of a letter “A” engraved by laser utilising three scanning
approach POT-FT (top row), Conventional (middle row) and SW (bottom row). For each
scanning approach we varied the scan speed v= 0.9 m/s (left column) v= 3.6 m/s (central
column) v= 7.2 m/s (right column). In order to keep the distance between pulses δ= 9 µm
unchanged, when varying v, we proportionally varied the repetition rate f= 100 kHz, f= 400
kHz, f= 800 kHz. The number of scans was fixed to N= 75.

These results are confirmed by SEM analysis shown in Fig. 8.
We can therefore conclude that increasing v from 0.9 m/s to 7.2 m/s will induce severe over

engraving in the groove bottom-sides due to the increase of overlapping which in turn is induced
by the galvo acceleration. This phenomenon is strongly reduced by adopting different scanning
approaches like POD- FT or SW. Furthermore, with v= 7.2 m/s the time to accomplish the
N= 75 scans is t= 167 s for POD-FT leading to an ablation efficiency of roughly αFT ≈ 0.011
mm3·min−1·W−1 and becomes t= 276s for SW corresponding to αSW ≈ 0.0063 mm3·min−1·W−1.
Both are compatible with data previously reported in literature for the same fluence value
(Φ= 2.26 J·cm−2) and multi-pass processing [6]. Thus, although POD-FT and SW are both valid
alternatives for a precise engraving, POD-FT respect to SW enables a reduction of the scanning
time by nearly 40% which contribute to sensibly boost the process throughput.
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Fig. 7. 3D profiles of the engraved part (groove) in the case of v= 7.2 m/s and f= 800
kHz for three scanning approaches: POD-FT (up), conventional (middle) and Sky Writing
(bottom). In the case of Conventional scanning (middle) the profilometer was unable to
measure the contour of the groove (see NM, yellowish, part).

Fig. 8. SEM micrographs of the “A” engraved by laser using three scanning approach:
POD-FT (left), Conventional (middle) Sky Writing (right). The scan speed was v= 7.2 m/s
and the repetition rate 800 kHz. Also shown (bottom row) a particular of the groove contour
and the processing time.

4. Conclusion

An innovative POD scanning technique for high repetition rate, industrial, femtosecond laser
sources has been introduced and tested based on two recent innovative technologies. The first is
a mode locked CPA femtosecond laser which can deliver pulses on demand and with flexible
repetition rates combined with constant pulse energies. The second is a galvo scanner and
control board (excelliSCAN 14 with RTC6), which can calculate and predict the exact time to
trigger pulse emission by taking into account the acceleration of the galvo mirrors. A clear
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advantage of this approach has been shown in respect to conventional scanning with a fixed
repetition rate by increasing the pulse to pulse position control tackling issues coming from
pulse accumulation. It has been shown that pulses can be delivered with 1 µm accuracy at scan
speed as high as 20 m/s and that the pulse energy doesn’t change substantially when adapting
the repetition rate to the pulse demand. In terms of accuracy, the proposed approach shows
performances comparable to well established technologies like SW. Moreover, for applications
like engraving where several passes and direction changes are required, POD-FT shows the
advantage of reducing the processing time (up to 40% in the case reported) since no extra galvo
movements are required to manage acceleration. We believe that a wide variety of applications
like laser scribing, highly precise patterning, surface structuring, drilling of precise micro holes
matrix, etc. will benefit from the POD-FT both in term of precision and throughput, thus
paving the way for an ever more ubiquitous use of ultrashort pulse laser technology in industrial
environments like micro- and consumable electronic, micro-mechanic, etc.
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